Ionization of Atomic Hydrogen in Strong Infrared Laser Fields

Presented by: Brant Abeln ¹ Collaborators: Alexei Grum-Grzhimailo ², Dan Weflen ³, Klaus Bartschat ¹, Timothy Urness ¹

¹Drake University

²Moscow State University

³University of Colorado at Boulder

May 27, 2010

DAMOP 2010

Abeln et al. (DU, MSU and CU)

Ionization of H

May 27, 2010 1 / 22

Where is Drake University?

E

・ロト ・ 日 ・ ・ 回 ・

Abeln et al. (DU, MSU and CU)

Ionization of H

May 27, 2010 2 / 22

Introduction

- Ultrafast Physics
- Laser Pulse

Analysis

- Observables
- Numerical Methods
- Matrix Iteration

3 New Results

- Comparisons
- New Calculations
- 4 Conclusions and Outlook

Introduction

- Ultrafast Physics
- Laser Pulse

2 Analysis

- Observables
- Numerical Methods
- Matrix Iteration

New Results

- Comparisons
- New Calculations

Introduction

- Ultrafast Physics
- Laser Pulse

2 Analysis

- Observables
- Numerical Methods
- Matrix Iteration

3 New Results

- Comparisons
- New Calculations

Introduction

- Ultrafast Physics
- Laser Pulse

2 Analysis

- Observables
- Numerical Methods
- Matrix Iteration

3 New Results

- Comparisons
- New Calculations

4 Conclusions and Outlook

Definition

1 Attosecond is one-millionth of one millionth of one millionth (10^{-18}) of a second.

- There are twice as many attoseconds in 1 second than seconds in the **age of the universe** (15 billion years)!
- The period for the n=1 orbit in atomic hydrogen is ≈ 150 attoseconds
- Attosecond laser pulses provide a window to study the details of (valence) electron interactions in atoms and molecules.
- A major role for theory in attosecond science is to explain novel ways to investigate and to control electronic processes in matter on such ultra-short time scales.

Definition

1 Attosecond is one-millionth of one millionth of one millionth (10^{-18}) of a second.

- There are twice as many attoseconds in 1 second than seconds in the age of the universe (15 billion years)!
- The period for the n=1 orbit in atomic hydrogen is ≈ 150 attoseconds
- Attosecond laser pulses provide a window to study the details of (valence) electron interactions in atoms and molecules.
- A major role for theory in attosecond science is to explain novel ways to investigate and to control electronic processes in matter on such ultra-short time scales.

< ロ > < 同 > < 回 > < 回 > < 回

Definition

1 Attosecond is one-millionth of one millionth of one millionth (10^{-18}) of a second.

- There are twice as many attoseconds in 1 second than seconds in the age of the universe (15 billion years)!
- The period for the n=1 orbit in atomic hydrogen is ≈ 150 attoseconds
- Attosecond laser pulses provide a window to study the details of (valence) electron interactions in atoms and molecules.
- A major role for theory in attosecond science is to explain novel ways to investigate and to control electronic processes in matter on such ultra-short time scales.

< ロ > < 同 > < 回 > < 回 > < 回

Definition

1 Attosecond is one-millionth of one millionth of one millionth (10^{-18}) of a second.

- There are twice as many attoseconds in 1 second than seconds in the age of the universe (15 billion years)!
- The period for the n=1 orbit in atomic hydrogen is ≈ 150 attoseconds
- Attosecond laser pulses provide a window to study the details of (valence) electron interactions in atoms and molecules.
- A major role for theory in attosecond science is to explain novel ways to investigate and to control electronic processes in matter on such ultra-short time scales.

Definition

1 Attosecond is one-millionth of one millionth of one millionth (10^{-18}) of a second.

- There are twice as many attoseconds in 1 second than seconds in the age of the universe (15 billion years)!
- The period for the n=1 orbit in atomic hydrogen is ≈ 150 attoseconds
- Attosecond laser pulses provide a window to study the details of (valence) electron interactions in atoms and molecules.
- A major role for theory in attosecond science is to explain novel ways to investigate and to control electronic processes in matter on such ultra-short time scales.

- 4 同 ト 4 ヨ ト 4 ヨ

- $\bullet~{\rm Intensity}$ range from $10^{12}-10^{15}~{\rm W/cm^2}$
- 10¹⁴ W/cm² is a million billion times stronger than the radiation that the Earth gets from the Sun directly above us on a clear day.
- Such intensities can rip electrons away from atoms in a very different way from the standard photoeffect:
 - Multi-photon ionization
 - Above-threshold ionization
 - Field (tunnel) ionization
- Keldysh Parameter (for atomic hydrogen):

 $\lambda [\mathrm{nm}] \sqrt{I[10^{14} \mathrm{W/cm}^2]}$

- $\gamma \gg 1
 ightarrow$ multi-photon ionization; $\gamma < 0.5
 ightarrow$ tunnel ionization
- $\gamma pprox 1
 ightarrow$ no clear picture and treatment becomes very difficult
- $\gamma = 1.06$ for $\lambda = 800$ nm and $I = 10^{14}$ W/cm²!!!

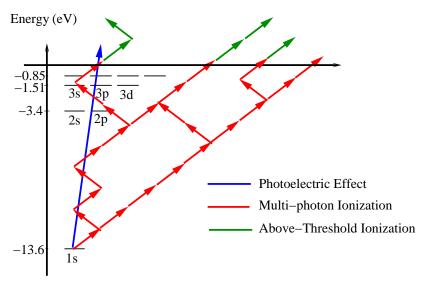
- $\bullet~{\rm Intensity}$ range from $10^{12}-10^{15}~{\rm W/cm^2}$
- $\bullet~10^{14}~W/cm^2$ is a million billion times stronger than the radiation that the Earth gets from the Sun directly above us on a clear day.
- Such intensities can rip electrons away from atoms in a very different way from the standard photoeffect:
 - Multi-photon ionization
 - Above-threshold ionization
 - Field (tunnel) ionization
- Keldysh Parameter (for atomic hydrogen):

 $\lambda [\mathrm{nm}] \sqrt{I [10^{14} \mathrm{W/cm}^2]}$

- $\gamma \gg 1
 ightarrow$ multi-photon ionization; $\gamma < 0.5
 ightarrow$ tunnel ionization
- $\gamma \approx 1 \rightarrow$ no clear picture and treatment becomes very difficult
- $\gamma = 1.06$ for $\lambda = 800$ nm and $I = 10^{14}$ W/cm²!!!

- $\bullet~{\rm Intensity}$ range from $10^{12}-10^{15}~{\rm W/cm^2}$
- $\bullet~10^{14}~W/cm^2$ is a million billion times stronger than the radiation that the Earth gets from the Sun directly above us on a clear day.
- Such intensities can rip electrons away from atoms in a very different way from the standard photoeffect:
 - Multi-photon ionization
 - Above-threshold ionization
 - Field (tunnel) ionization
- Keldysh Parameter (for atomic hydrogen):

 $\lambda [\mathrm{nm}] \sqrt{I[10^{14} \mathrm{W/cm}^2]}$

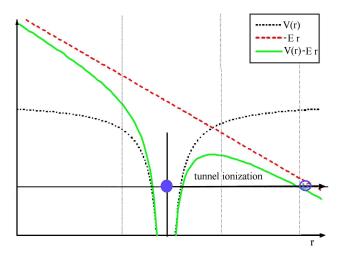

- $\gamma \gg 1
 ightarrow {
 m multi-photon}$ ionization; $\gamma < 0.5
 ightarrow {
 m tunnel}$ ionization
- $\gamma \approx 1 \rightarrow$ no clear picture and treatment becomes very difficult
- $\gamma = 1.06$ for $\lambda = 800$ nm and $I = 10^{14}$ W/cm²!!!

- $\bullet~{\rm Intensity}$ range from $10^{12}-10^{15}~{\rm W/cm^2}$
- $\bullet~10^{14}~W/cm^2$ is a million billion times stronger than the radiation that the Earth gets from the Sun directly above us on a clear day.
- Such intensities can rip electrons away from atoms in a very different way from the standard photoeffect:
 - Multi-photon ionization
 - Above-threshold ionization
 - Field (tunnel) ionization
- Keldysh Parameter (for atomic hydrogen):

 $\sim \frac{1}{\lambda [\text{nm}] \sqrt{I[10^{14} \text{W/cm}^2]}}$

- $\gamma \gg 1
 ightarrow$ multi-photon ionization; $\gamma < 0.5
 ightarrow$ tunnel ionization
- $\gamma pprox 1
 ightarrow$ no clear picture and treatment becomes very difficult
- $\gamma = 1.06$ for $\lambda = 800$ nm and $I = 10^{14}$ W/cm²!!!

Single vs. Multi–Photon Ionization in Atomic Hydrogen



- $\bullet~{\rm Intensity}$ range from $10^{12}-10^{15}~{\rm W/cm^2}$
- $\bullet~10^{14}~W/cm^2$ is a million billion times stronger than the radiation that the Earth gets from the Sun directly above us on a clear day.
- Such intensities can rip electrons away from atoms in a very different way from the standard photoeffect:
 - Multi-photon ionization
 - Above-threshold ionization
 - Field (tunnel) ionization
- Keldysh Parameter (for atomic hydrogen):

 $\sim \overline{\lambda [\text{nm}] \sqrt{I [10^{14} \text{W/cm}^2]}}$

- $\gamma \gg 1
 ightarrow$ multi-photon ionization; $\gamma < 0.5
 ightarrow$ tunnel ionization
- $\gamma pprox 1
 ightarrow$ no clear picture and treatment becomes very difficult
- $\gamma = 1.06$ for $\lambda = 800$ nm and $I = 10^{14}$ W/cm²!!!

Field (Tunnel) Ionization

Abeln et al. (DU, MSU and CU)

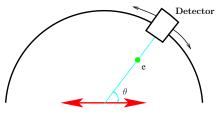
불▶ ◀ 불▶ 불 ∽ ९. May 27, 2010 8 / 22

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

- $\bullet~{\rm Intensity}$ range from $10^{12}-10^{15}~{\rm W/cm^2}$
- $\bullet~10^{14}~W/cm^2$ is a million billion times stronger than the radiation that the Earth gets from the Sun directly above us on a clear day.
- Such intensities can rip electrons away from atoms in a very different way from the standard photoeffect:
 - Multi-photon ionization
 - Above-threshold ionization
 - Field (tunnel) ionization
- Keldysh Parameter (for atomic hydrogen):

$$\gamma \approx \frac{850}{\lambda [\text{nm}] \sqrt{I[10^{14} \text{W/cm}^2]}}$$

- $\gamma \gg 1 \rightarrow$ multi-photon ionization; $\gamma < 0.5 \rightarrow$ tunnel ionization
- $\gamma\approx 1 \rightarrow$ no clear picture and treatment becomes very difficult
- $\gamma = 1.06$ for $\lambda = 800\,{\rm nm}$ and $I = 10^{14}\,{\rm W/cm^2!!!}$


Analysis

Observables

Observables

Scheme of an Angular-Distribution Experiment

- Energy spectrum
- Angular distribution
- Time-resolved visualization

Laser Field

< ロ > < 同 > < 回 > < 回 > < 回

Gauge

Time-Dependent Schrödinger Equation

$$\hat{H}\Psi = i\frac{\partial}{\partial t}\Psi$$

Length form of electric dipole operator

$$\hat{H} = -\frac{1}{2}\nabla^2 + \frac{\ell(\ell+1)}{2r^2} - \frac{1}{r} + r\cos(\vartheta)E(t)$$
(2)

Velocity form of electric dipole operator

$$\hat{H} = -\frac{1}{2}\nabla^2 + \frac{\ell(\ell+1)}{2r^2} - \frac{1}{r} - \frac{i\mathbf{A}(t)}{c} \cdot \nabla$$
(3)

Image: A matched and A matc

• Finite difference

- Crank-Nicholson
- Matrix Iteration
- Leap-Frog
- Finite elements

3

• Finite difference

Crank-Nicholson

- Matrix Iteration
- Leap-Frog

• Finite elements

2

• Finite difference

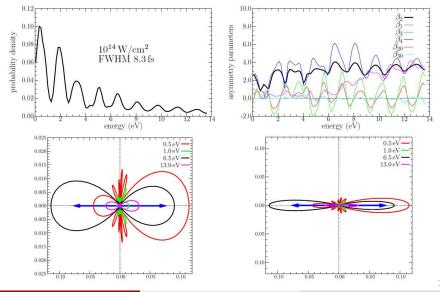
- Crank-Nicholson
- Matrix Iteration
- Leap-Frog
- Finite elements

• Finite difference

- Crank-Nicholson
- Matrix Iteration
- Leap-Frog

• Finite elements

3


- Finite difference
 - Crank-Nicholson
 - Matrix Iteration
 - Leap-Frog
- Finite elements

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Analysis

Numerical Methods

Length Form

Abeln et al. (DU, MSU and CU)

Ionization of H

May 27, 2010 13 / 22

Matrix Iteration (MIM)

Crank-Nicholson Approximation

$$\Psi(\mathbf{r}, t + \Delta t) \approx \frac{1 - i\hat{H}\Delta t/2}{1 + i\hat{H}\Delta t/2}\Psi(\mathbf{r}, t)$$
(4)

- $1 + i\hat{H}\Delta t/2 = \hat{O}_D + \hat{O}_{ND}$
- $[1+i\hat{H}\Delta t/2]^{-1} \approx (1-\hat{O}_D^{-1}\hat{O}_{ND}+\hat{O}_D^{-1}\hat{O}_{ND}\hat{O}_D^{-1}\hat{O}_{ND}+\ldots)\hat{O}_D^{-1}$
- M. Nurhuda and F.H.M. Faisal (PRA 60 4, 1999)

< ロ > < 国 > < 国 > < 国 > < 国

Matrix Iteration (MIM)

Crank-Nicholson Approximation

$$\Psi(\mathbf{r}, t + \Delta t) \approx \frac{1 - i\hat{H}\Delta t/2}{1 + i\hat{H}\Delta t/2}\Psi(\mathbf{r}, t)$$
(4)

•
$$1 + i\hat{H}\Delta t/2 = \hat{O}_D + \hat{O}_{ND}$$

- $[1+i\hat{H}\Delta t/2]^{-1} \approx (1-\hat{O}_D^{-1}\hat{O}_{ND}+\hat{O}_D^{-1}\hat{O}_{ND}\hat{O}_D^{-1}\hat{O}_{ND}+\ldots)\hat{O}_D^{-1}$
- M. Nurhuda and F.H.M. Faisal (PRA 60 4, 1999)

< ロ > < 同 > < 回 > < 回 > < 回

Matrix Iteration (MIM)

Crank-Nicholson Approximation

$$\Psi(\mathbf{r}, t + \Delta t) \approx \frac{1 - i\hat{H}\Delta t/2}{1 + i\hat{H}\Delta t/2}\Psi(\mathbf{r}, t)$$
(4)

•
$$1 + i\hat{H}\Delta t/2 = \hat{O}_D + \hat{O}_{ND}$$

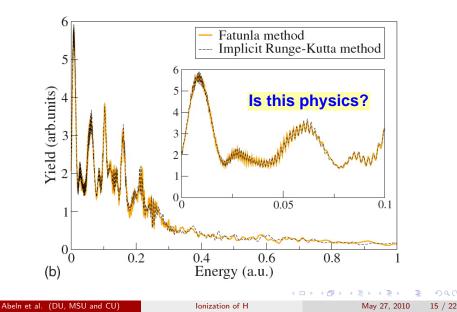
- $[1 + i\hat{H}\Delta t/2]^{-1} \approx (1 \hat{O}_D^{-1}\hat{O}_{ND} + \hat{O}_D^{-1}\hat{O}_{ND}\hat{O}_D^{-1}\hat{O}_{ND} + \dots)\hat{O}_D^{-1}$
- M. Nurhuda and F.H.M. Faisal (PRA 60 4, 1999)

< ロ > < 同 > < 回 > < 回 > < 回

Matrix Iteration (MIM)

Crank-Nicholson Approximation

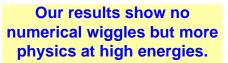
$$\Psi(\mathbf{r}, t + \Delta t) \approx \frac{1 - i\hat{H}\Delta t/2}{1 + i\hat{H}\Delta t/2}\Psi(\mathbf{r}, t)$$
(4)

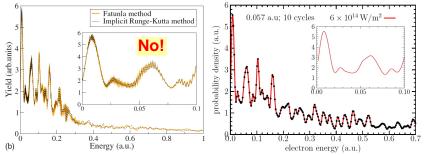

•
$$1 + i\hat{H}\Delta t/2 = \hat{O}_D + \hat{O}_{ND}$$

•
$$[1 + i\hat{H}\Delta t/2]^{-1} \approx (1 - \hat{O}_D^{-1}\hat{O}_{ND} + \hat{O}_D^{-1}\hat{O}_{ND}\hat{O}_D^{-1}\hat{O}_{ND} + \dots)\hat{O}_D^{-1}$$

• M. Nurhuda and F.H.M. Faisal (PRA 60 4, 1999)

Comparisons

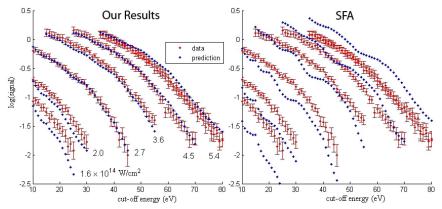

Madronero and Piraux



New Results

Comparisons

Comparisons



Abeln et al. (DU, MSU and CU)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへの

Comparison with Experiments

strong-field approximation is not sufficient!

• IR laser fields calculations are computationally expensive.

- MIM yields numerically stable results.
- A large radial mesh achieved converged results.
- We created **time-resolved visualization** of the electron probability density.

< ロ > < 同 > < 回 > < 回 > < 回

- IR laser fields calculations are computationally expensive.
- MIM yields numerically stable results.
- A large radial mesh achieved converged results.
- We created **time-resolved visualization** of the electron probability density.

< ロ > < 同 > < 回 > < 回 > < 回

- IR laser fields calculations are computationally expensive.
- MIM yields numerically stable results.
- A large radial mesh achieved converged results.
- We created **time-resolved visualization** of the electron probability density.

▲ @ ▶ ▲ @ ▶ ▲

- IR laser fields calculations are computationally expensive.
- MIM yields numerically stable results.
- A large radial mesh achieved converged results.
- We created **time-resolved visualization** of the electron probability density.

▲ □ ► ▲ □ ► ▲

- Compare with experiment (Brisbane, Australia; Heidelberg, Germany)
- Parallelize computer code (each run takes several days on single CPU)
- Look at more complex systems (Li, maybe H₂)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Compare with experiment (Brisbane, Australia; Heidelberg, Germany)
- Parallelize computer code (each run takes several days on single CPU)
- Look at more complex systems (Li, maybe H₂)

- Compare with experiment (Brisbane, Australia; Heidelberg, Germany)
- Parallelize computer code (each run takes several days on single CPU)
- Look at more complex systems (Li, maybe H₂)

・ロト ・ 同ト ・ ヨト ・ ヨ

More?

PHYSICAL REVIEW A 81, 043408 (2010)

Ionization of atomic hydrogen in strong infrared laser fields

Alexei N. Grum-Grzhimailo,^{*} Brant Abeln,[†] Klaus Bartschat,[‡] and Daniel Weflen[§] Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311, USA

Timothy Urness

Department of Mathematics and Computer Science, Drake University, Des Moines, Iowa 50311, USA (Received 27 January 2010; published 14 April 2010)

We have used the matrix iteration method of Nurhuda and Faisal [Phys. Rev. A **60**, 3125 (1999)] to treat ionization of atomic hydrogen by a strong laser pulse. After testing our predictions against a variety of previous calculations, we present ejected-electron spectra as well as angular distributions for few-cycle infrared laser pulses with peak intensities of up to 10^{15} W/cm². It is shown that the convergence of the results with the number of partial waves is a serious issue, which can be managed in a satisfactory way by using the velocity form of the electric dipole operator in connection with an efficient time-propagation scheme.

DOI: 10.1103/PhysRevA.81.043408

PACS number(s): 32.80.Rm

イロト イポト イヨト イヨト

- Compare with experiment (Brisbane, Australia; Heidelberg, Germany)
- Parallelize computer code (each run takes several days on single CPU)
- Look at more complex systems (Li, maybe H₂)

Thank You!

< ロ > < 同 > < 回 > < 回 > < 回