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Temkin-Poet Model of e—H Collisions

¢ We solve the time-dependent Schrodinger Equation
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by time-propagating the initial (singlet spin) state
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e Excitation cross sections for discrete states 2s,3s,4s,...,ns are

obtained as
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where
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e The total ionization cross section is obtained as
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Extension to Energy-Differential Ionization

¢ Replace P, (r,) by Coulomb functions:

st(r2vt) = /0 dTlPks(Tl)P(T17r2wt)7

T
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o If lim,___ P, (ry) = k~'/2 x sin(kr...), then &,, is proportional to the

SDCS at the energy k*/2 and can be normalized by using the total

ionization cross section.

[A similar idea was suggested by Colgan, Pindzola, and Robicheaux.]



Goals of the Project
o Visualization of |Fy,(ry, )|
¢ Is G;, symmetric around half the excess energy E/27

¢ Many pseudo-state methods, such as CCC, RMPS, TERM

produce non-symmetric “raw” results!

e Example: TP model at 18.6eV (from M.P. Scott)
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Excitation and Ionization Probabilities at 40.8eV
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e Note the symmetry in the ionization probabilities around E/2!

(e = E/40.)



Excitation and Ionization Probabilities at 20eV
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e Note the symmetry in the ionization probabilities around E/2!

(e = E/40.)



Visualization of |F,(rs,1)|?

(Note the integral under the curve and the speed of |F},(ry,1)|>.)
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Visualization of |F,(rs,1)|?

(Note the integral under the curve and the speed of |F},(ry,1)|>.)
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Convergence of the Results

e FDM: Finite Difference Method (Jones & Stelbovics)
e ECS: Exterior Complex Scaling (Baertschy et al.)
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e A large radial mesh and long propagation times are needed for small

excess energies and nearly symmetric energy sharing.



Comparison with a T-matrix method

K. Bartschat et al. (2002), Physical Review A 66, in press
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e The finite mesh size and the energy width of the package cause
problems for nearly symmetric energy sharing.

e The symmetrized T-matrix method with IERM wavefunctions does
better for nearly symmetric energy sharing but shows unphysical

oscillations in the asymmetric case.



Conclusions and Outlook

In contrast to standard pseudo-state methods (CCC, RMPS, IERM),
the wavefunction obtained by integrating the time-dependent
Schrodinger equation “knows” about the correct energy sharing

between the two outgoing electrons.

Consequently, no explicitly symmetrized recipe is required to extract

the energy-differential ionization cross section.

In fact, the numerical accuracy can be checked by comparing the
numerical results against the symmetry required by the underlying

physical problem.

We obtained very satisfactory agreement with other benchmark
results — higher accuracy can be achieved by increasing the

computational resources.

The code has recently been parallelized and will be extended to treat

the full e-H problem.

A movie has been created to enhance the visualization.



