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Introduction Ultrafast Physics

Attosecond/Femtosecond Physics

Definition

1 Attosecond is one-millionth of one millionth of one millionth (10−18) of
a second.

There are twice as many attoseconds in 1 second than seconds in the
age of the universe (15 billion years)!

The period for the n = 1 orbit in atomic hydrogen is ≈ 150
attoseconds

Attosecond laser pulses provide a window to study the details of
(valence) electron interactions in atoms and molecules.

A major role for theory in attosecond science is to explain novel

ways to investigate and to control electronic processes in matter
on such ultra-short time scales.
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Introduction Laser Pulse

Hydrogen Atom in Strong Infrared Laser Pulse

Intensity range from 1012 − 1015 W/cm2

10
14 W/cm2 is a million billion times stronger than the

radiation that the Earth gets from the Sun directly above us on

a clear day.

Such intensities can rip electrons away from atoms in a very different
way from the standard photoeffect:

Multi-photon ionization
Above-threshold ionization
Field (tunnel) ionization

Keldysh Parameter (for atomic hydrogen):

γ ≈
850

λ[nm]

√

I[1014W/cm2]
γ � 1 → multi-photon ionization; γ < 0.5 → tunnel ionization
γ ≈ 1 → no clear picture and treatment becomes very difficult
γ = 1.06 for λ = 800 nm and I = 1014 W/cm2!!!
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Introduction Laser Pulse

Single vs. Multi−Photon Ionization in Atomic Hydrogen
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Introduction Laser Pulse

Field (Tunnel) Ionization
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Analysis Observables

Observables

Energy spectrum

Angular distribution

Time-resolved visualization
e

Detector

Scheme of an Angular-Distribution Experiment

Laser Field

θ
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Analysis Numerical Methods

Gauge

Time-Dependent Schrödinger Equation

ĤΨ = i
∂

∂t
Ψ (1)

Length form of electric dipole operator

Ĥ = −
1

2
∇

2 +
`(`+ 1)

2r2
−

1

r
+ r cos(ϑ)E(t) (2)

Velocity form of electric dipole operator

Ĥ = −
1

2
∇

2 +
`(`+ 1)

2r2
−

1

r
−

iA(t)

c
· ∇ (3)
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Analysis Numerical Methods

Propagation

Finite difference

Crank-Nicholson
Matrix Iteration
Leap-Frog

Finite elements
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Analysis Numerical Methods

Length Form
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Analysis Matrix Iteration

Matrix Iteration (MIM)

Crank-Nicholson Approximation

Ψ(r, t+∆t) ≈
1− iĤ∆t/2

1 + iĤ∆t/2
Ψ(r, t) (4)

1 + iĤ∆t/2 = ÔD + ÔND

[1 + iĤ∆t/2]−1 ≈ (1− Ô−1

D
ÔND + Ô−1

D
ÔNDÔ

−1

D
ÔND + . . .)Ô−1

D

M. Nurhuda and F.H.M. Faisal (PRA 60 4, 1999)
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−1

D
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D
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ÔNDÔ
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New Results Comparisons

Madronero and Piraux
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Cueballmania
Text Box
Is this physics?



New Results Comparisons

Comparisons
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Cueballmania
Text Box
No!

Cueballmania
Text Box
Our results show no numerical wiggles but more physics at high energies.



New Results New Calculations
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New Results New Calculations

Comparison with Experiments

Abeln et al. (DU, MSU and CU) Ionization of H May 27, 2010 18 / 22

Cueballmania
Text Box
strong-field approximation
is not sufficient!



Conclusions and Outlook

Conclusions

IR laser fields calculations are computationally expensive.

MIM yields numerically stable results.

A large radial mesh achieved converged results.

We created time-resolved visualization of the electron probability
density.
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Conclusions and Outlook

Outlook

Compare with experiment (Brisbane, Australia; Heidelberg, Germany)

Parallelize computer code (each run takes several days on single CPU)

Look at more complex systems (Li, maybe H2)
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Conclusions and Outlook

More?
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Conclusions and Outlook

Outlook

Compare with experiment (Brisbane, Australia; Heidelberg, Germany)

Parallelize computer code (each run takes several days on single CPU)

Look at more complex systems (Li, maybe H2)

Thank You!
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