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Some relevant points of this talk are summarized here.

@ PERSPECTIVE

Electron collisions with atoms, ions, molecules, and
surfaces: Fundamental science empowering
advances in technology

Klaus Bartschat™' and Mark J. Kushner®

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved May 16, 2016 (received for review April 16, 2016)

Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding
and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on
LTPs. Recent progress in obtaining experimental benchmark data and the development of highly
sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser
and remote plasma etching of SizN, as examples, we demonstrate how accurate and comprehensive
datasets for electron collisions enable complex modeling of plasma-using technologies that empower
our high-technology-based society.

electron scattering | close coupling | ab initio | plasmas | kinetic modeling
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Motivation: The Need for Electron Collision Data
DIODE-PUMPED ALKALI LASERS (DPALs)

 DPAL is a class of optically pumped lasers that leverage
inexpensive semiconductor diode lasers to pump alkali vapor.

* Poor optical quality, wide bandwidth of diode laser (DL) is converted
into high optical quality, narrow bandwidth from alkali laser.

AE
fnerey |
3 — T~ n’P;, * DL pumps the D,(2S,, — 2P;,)
2 — n°Py,
Collisional i T 2
OQuenching 1  Collisional quenching: 2P,, — 2P,,,
! e Lasing on D,(?P,,, — 2S,,,)
D, (pump) D, (laser) * Requires inversion of ground state.
> . . :
* Collisional quenching agent N,
1 n2s,, (slide adapted from a presentation by

M. J. Kushner, University of Michigan,
Institute for Plasma Science & Engineering.)
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Production and Assessment of Atomic Data

e Data for electron collisions with atoms and ions are needed for modeling processes in
e laboratory plasmas, such as discharges in lighting and lasers
e astrophysical plasmas
e planetary atmospheres
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Theoretical/Computational Methods

Choice of Computational Approaches
e Which one is right for YOU?

e Perturbative (Born-type) or Non-Perturbative (close-coupling, time-

dependent, ...)7
e Semi-empirical or fully ab initio?
e How much input from experiment?
e Do you trust that input?

e Predictive power? (input < output)
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Theoretical/Computational Methods

Choice of Computational Approaches
e Which one is right for YOU?

e The answer depends on many aspects, such as:
e How many transitions do you need? (elastic, momentum transfer, excitation,
ionization, ... how much lumping?)
e How complex is the target (H, He, Ar, W, H,, H,O, radical, DNA, ....)?
e Do the calculation yourself or beg/pay somebody to do it for you?
e What accuracy can you live with?
e Are you interested in numbers or “correct” numbers?

¢ Which numbers do really matter?
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Classification of Numerical Approaches
e Special Purpose (elastic/total): OMP (pot. scatt.); Polarized Orbital

e Born-type methods
e PWBA, DWBA, FOMBT, PWBA2, DWBA2, ...
e fast, easy to implement, flexible target description, test physical assumptions
e two states at a time, no channel coupling, problems for low energies and optically
forbidden transitions, results depend on the choice of potentials, unitarization
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Classification of Numerical Approaches

e (Time-Independent) Close-coupling-type methods
e CCn, CCO, CCC, RMn, IERM, RMPS, DARC, BSR, ...

e Standard method of treating low-energy scattering; based upon the expansion

1

\Ifé&r(rl, o Tyyg) = A i CI)ZLSW(rl, R N " Fg ()

e simultaneous results for transitions between all states in the expansion;
sophisticated, publicly available codes exist; results are internally consistent

e expansion must be cut off (- CCC, RMPS, IERM)

e usually, a single set of mutually orthogonal one-electron orbitals is used
for all states in the expansion (— BSR with non-orthogonal orbitals)
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Classification of Numerical Approaches

e Time-dependent and other direct methods
e TDCC, ECS
e solve the Schrodinger equation directly on a grid

e very expensive, only possible for (quasi) one- and two-electron systems.
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Inclusion of Target Continuum (Ionization)

imaginary absorption potential (OMP)

final continuum state in DWBA

directly on the grid and projection to continuum states (TDCC, ECS)

add square-integrable pseudo-states to the CC expansion (CCC, RMPS, ...)
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Optical Model Potential (Blanco, Garcia) —a "Special Purpose" Approach

Numerical Methods: OMP for Atoms

e For electron-atom scattering, we solve the partial-wave equation

r2

d> Ll +1) -
<d7“2 N B 2Vmp(k7r)) uy(k,r) = k“u,(k,r).

e The local model potential is taken as

Vmp<k7 7“) — ‘/static (T) + ‘/exchange(k7 T) + Vpolarization (T) + ivabsorption<k7 7“)
with

® Vi, change(k;7) from Riley and Truhlar (J. Chem. Phys. 63 (1975) 2182);
® V larization (7) from Zhang et al. (J. Phys. B 25 (1992) 1893);
® V. bsorption (K, 7) from Staszewska et al. (Phys. Rev. A 28 (1983) 2740).

e Due to the imaginary absorption potential, the OMP method
e yields a complex phase shift 9, = A\, + ip,
e allows for the calculation of ICS and DCS for
e clastic scattering

e inelastic scattering (all states together) !'['S great if this
Is all you want!

e the sum (total) of the two processes
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Polarized Orbital —an "Ab Initio Special Purpose" Approach

Aust. J. Phys., 1997, 50, 511-24
Relativistic Effects in Low-energy Electron—Argon Scattering*

R. P. McEachran®® and A. D. Stauffer

We have performed a relativistic treatment at low energy of electronargon scattering which
includes both polarisation and dynamic distortion effects. Our results are in excellent agreement
with the experimentally derived momentum transfer cross section and scattering length, as
well as with very recent measurements of the elastic differential cross section.
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Extension to account for inelastic effects:
J. Phys. B 42 (2009) 075202
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BEf-scaling; Plane-Wave Born with Experimental Optical
Oscillator Strength and Empirical Energy Shift

PHYSICAL REVIEW A, VOLUME 64, 032713
Scaling of plane-wave Born cross sections for electron-impact excitation of neutral atoms

Yong-Ki Kim
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8421
(Received 12 March 2001; published 20 August 2001)

Two methods to scale plane-wave Born cross sections for electron-impact excitations of neutral atoms are
shown to produce excitation cross sections comparable in accuracy to those obtained by more sophisticated
collision theories such as the convergent close-coupling method. These scaling methods are applicable to
mtegrated cross sections for electric dipole-allowed transitions. Scaled cross sections are in excellent agree-
ment with available theoretical and experimental data for excitations in H, He, Li, Be, Na, Mg, K, Ca, Rb, Sr,
Cs, Ba, Hg, and T1, indicating the possibility of rapid and reliable calculations of excitation cross sections for
many other neutral atoms.
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works well, but is limited to optically allowed transitions

Similar idea works even better for ionization of complex targets
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Semi-Relativistic DWBA

PHYSICAL REVIEW A, VOLUME 61, 022701

Excitation of Ar 3p°4s-3p°4p transitions by electron impact

C. M. Maloney,1 J. L. Peacher,' K. Bartschat.> and D. II. Madison'
LPhysics Department, University of Missouri—Rolla, Rolla, Missouri 65409-0640
2Physics Department, Drake University, Des Moines, lowa 50311

Electron-impact excitation of argon from the 3p°4s (J=0,2) metastable states to the 3p°4p (J=0,123)
manifold has been investigated in the semirelativistic first-order distorted-wave and plane-wave Born approxi-
mations. The results are compared with recent experimental data of Boffard e al. [Phys. Rev. A 59, 2749
(1999)] and R-matrix predictions by Bartschat and Zeman [Phys. Rev. A 59, R2552 (1999)]. In cases for which
perturbative approaches are expected to be valid, the plane-wave Born approximation is found to be suffi-
ciently accurate and thus allows for an efficient calculation of results over a wide range of collision energies.

The first-order distorted-wave T matrix for atomic excitation 1S given by
Ti=(n+1){x; (ro) W)V =Ufro)|AT,(£)x; (ro))-

2?7!’

— _1 . N
Ur=yVi—3(aVy) - 7\

y=V1+a’E,, n=1+vy—3a’V;

+1 ! 3 r\ 2 1 n
G+ 7' (77) U
7

polarization and absorption potentials
may also be included
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Ar 3p°4s —> 3p°4p: DWBA vs. R-matrix

unitarization problem!

MALONEY. PEACHER , BARTSCHAT, AND MADISON (can be fixed; e.g., Dasgupta's NRL code)
Phys. Rev. A 61 (2000) 022701
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FIG. 1. Integral cross section) for flectron-impact excitation of
three states in the 2p manifold of from the metastable states
in the 1s manifold as a function o\ irkident electron energy. The
experimental data are those of Bofl et al. [7]. The theoretical
SRDW results are ss wave functions (Ndshed curve) and cIv3 wave
functions (solid curve).

Theoretical results depend on
wavefunctions and potentials

If you want to try doing your own calculations, check out
https://www-amdis.iaea.org/FAC/ or the

Los Alamos Atomic Collision Codes (if the site is accessible)

FIG. 2. Integral cross sections for electron-impact excitation of
three states in the 2 p manifold of argon from the metastable states
in the 1s manifold as a function of incident electron energy. The
experimental data are those of Boffard et al. [7]. The theoretical
results are PWBA (dashed curve); 15-state R-matrix results (long-
short dash); and SRDW with c1v3 wave functions (solid curve).
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This is the legacy website for the Atomic and Molecular Data Unit.
The latest information about our activities can be found at https://amdis.iaea.org.
Existing data services at this location function as usual.

International Atomic Energy Agency

Atomic Molecular Data Services
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Overview
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Los Alamos National Laboratory Atomic Data Sets

Interface to Los Alamos Atomic Physics Codes

An interface is available to run several Los Alamos atomic physics codes for calculation of atomic structure, electron impact excitation, as well as ionization processes.
The well known Hartree-Fock method of R.D. Cowan, developed at Group T-4 of the Los Alamos National Laboratory, is used for the atomic structure calculations.
Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT).

Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the
. distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated.

Link to Los Alamos atomic physics code center

Completed Atomic Data Sets by LANL codes

. A group at LANL participated at the CRP for "Atomic Data For Heavy Element Impurities in Fusion Reactors" and produced atomic data sets for argon, chlorine and silicon atoms for
- users.

' The data sets are available for level energies and statistical weights of fine-structure levels of the ground and excited configurations, oscillator strengths and electron-impact
~ excitation cross-sections, photo-ionization and electron-impact ionization cross-sections among the levels.

- e Argon Atomic Data Sets
e Chlorine Atomic Data Sets

e Silicon Atomic Data Sets

IAEA Nuclear Data Section |

A Contacts

Links
Contacts

"

-

IAEA-NDS

\ |
i Meetings . Coordinated Nuclear Reaction Nuclear Structure Technical Documents

Mission, Staff Nuclgar Data Worlkshos Newsletters Research Data Center & Decay Data INDC Reports Computer

and more Services P Projects Network Network Publications Codes




About Mission Business Newsroom Publications

Los Alamos National Laboratory

. : . - search site
Delivering science and technology to protect our nation and promote world stability

SCIENCE & INNOVATION COLLABORATION CAREERS COMMUNITY ENVIRONMENT

Service Unavailable

Unavailable Service

This service is unavailable.

Service is unavailable
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Online Computing

Below are some links to online computing resources for calculating plasma properties.

HEAVY: Cross sections for excitation and charge transfer for collisions between
hydrogenic targets and bare ions.

AAEXCITE: An interface to average approximation cross sections for calculating
electron impact cross sections for atomic ions.

RATES: Results from collisional radiative calculations of plasmas carried out with the
Los Alamos modeling codes are available. Interpolations allow the user to obtain total
radiated power, average ion charge, and relative ionization populations in a steady state
plasma.

(This resource is currently unavailable.)

LANL: An interface is available to run several Los Alamos atomic physics codes for
calculation of atomic structure, electron impact excitation, as well as ionization
processes. Since 2010, atomic data sets of argon, chlorine and silicon produced by a
group at LANL can be downloaded for all ionization stages.

FLYCHK: An interface to the FLYCHK code available at NIST, which generates atomic
level populations and charge state distributions for low-Z to mid-Z elements under
NLTE(Non-Local Thermodynamic Equilibrium) conditions.

FAC (Flexible Atomic Code): A complete set of collisional and radiative data of atoms
from Z=2 (Helium) to Z=14(Silicon).
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- FAC Input Files

General guidelines to write input files for FAC calculations are available. . .
| FAC_input_guidelines. pof Installation worked.

Examples of input files to run FAC codes are provided below.

237 ¥ Atomic Molecular Data Services

by the Nuclear Data Section

Databases » AMBDAS | ALADDIN | OPEN-ADAS | GENIE On-line Computing » HEAVY | AAEXCITE | RATES | LANL Codes | FLYCHK | FAC Data | GRASP2K

About Flexible Atomic Code (FAC)

It is an integrated software package by M. F. Gu to calculate various atomic radiative and collisional processes, including energy levels, radiative transition rates, collisional excitation and
ionization by electron impact, photoionization, autoionization, radiative recombination and dielectronic capture. The package also includes a collisional radiative model to construct synthetic
- spectra for plasmas under different physical conditions. Physics and code descriptions can be found in the reference [Can. J. Phys. 86: 675-689 (2008)].

cFAC was started around 2010 (based on FAC-1.1.1, released in 2006), initially focusing on providing large volumes of data as required, e.q., for collisional-radiative (CR) plasma modeling,
and eliminating reliance upon third-party Fortran numerical libraries with their C equivalents (hence the change in the package name). Databases and source codes for CR modeling will be
- available shortly.

- Source Codes
.~ FAC and cFAC codes are currently available at GitHub repositories of FAC and cFAC and managed by M. F. Gu and E. Stambulchik.

| didn't geta chanceto testit out
completely,but the download and

Atomic data for K-shell and L-shell charge states
- Sil.py Si2.py Si3.py Si4.py Si5.py Si6.py Si7.py Si8.py Si9.py Sil0.py Sill.py Si12.py

This is an example of calculating atomic data for K-shell and L-shell ions of silicon atoms.

Atomic data for M-shell ions by UTA levels

. uta_data.py: For Au ion with 31 electrons, please type "python uta_data.py 31"

' The input files create a set of atomic data to be used for M-shell ions.

Atomic data for Zeeman split levels
ebfield.py: For Fe, please type "python ebfield.py Fe"
- This is an example of computing zemmann splitted levels and transition rates for He-like ions.

. Atomic data for polarized atoms

. pol_data.py pol_spec.py

- This is an example of calculating poplarizations under unidirectional excitation of an electron beam. pol_data.py calculates the atomic data and pol_spec.py calculates the spectral model and
. produce the linear polarization of the spectral lines.

Collisional-Radiatve model calculations

. d.py: type "phtyon d.py 10 3 5"

. s.py: type "phtyon s.py 10 3"

. sel.py: type "phtyon sel.py 10 3"

. This is an example of running the process, starting from generating the atomic data, solving rate equation and postprocessing. d.py generates atomic data for Z=10, number of electrons

- =3, maximum n=5 for excitation. s.py runs the collisional radiative module. sel.py prints the line intensities in ascii format. Due to matrix size limitation, the CR module in FAC code is best
suited for a single charge state calculation. For charge balance calculations which involve numerous autoionizing states (dielectronic recombination channels), it is recommended to use a

. different code to solve the rate matrix equations.

Atomic Data Sets generated by FAC codes

Helium Atomic Data Sets
Lithium Atomic Data Sets
Beryllium Data Sets
Boron Data Sets
Carbon Data Sets
Nitrogen Data Sets
Oxygen Data Sets
Fluorine Data Sets

Neon Data Sets

Sodium Data Sets
Magnesium Data Sets
Aliminium Data Sets
Silicon Data Sets
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Relativistic DWBA; Semi-Relativistic DWBA; R-Matrix; Experiment

o
|

cross section (aoz)

0.01

PHYSICAL REVIEW A 81, 052707 (2010)

Electron-impact excitation of argon: Cross sections of interest in plasma modeling
R. K. Gangwar,' L. Sharma.” R. Srivastava,'! and A. D. Stauffer’
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Key Message:
Sometimes BIG Differences between Theories
and HUGE Experimental Error Bars!

Which model, if any, can we trust?
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Electron-impact excitation of the (5s*5p) 2P, 2= (55%65) 28, /2 transition in indium:
Theory and experiment
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We present angle-integrated and angle-differential cross sections for electron-impact excitation of the
(55*5p)2Pij» — (55%65) 282 transition in atomic indium. Experimental data for six incident electron energies
between 10 and 100 eV are compared with predictions from semirelativistic and fully relativistic B-spline
R-matrix calculations, as well as a fully relativistic convergent close-coupling model. Agreement between
our measured and calculated data is, with a few exceptions, found to be typically very good. Additionally,
the agreement between the present theoretical predictions is generally excellent, with the remaining small
deviations being associated with the slightly different, although still very accurate, descriptions of the target
structure. Agreement between the present results and an earlier relativistic distorted-wave computation [T. Das,
R. Srivastava, and A. D. Stauffer, Phys. Lett. A 375, 568 (2011)] was, however, found to be marginal, particularly
at 10 and 20 eV.
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RDW is very problematic for
the DCS, but not too bad for
the ICS (except for 10 eV).
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Time-IndependentClose-Coupling

e Standard method of treating low-energy scattering H LIJ — E LIJ

e Based upon an expansion of the total wavefunction as

T T 2N 1
llfés (ry,...,Tyyq) = Ai@fs (rl,...,rN,r);FEﬂ(r)

o Target states ®, diagonalize the N-electron target Hamiltonian according to

<(I)z‘/ | H:]FV | (I)z‘> — Ei 5z"z'

e The unknown radial wavefunctions Fy ; are determined from the solution of a system of coupled integro-

differential equations given by

2 0,0+ 1)
a2 2 + k2 FEZ(T) =2 i ‘/z'j(r) FE,j (r) + 22: Wz’j FE,j(T)
J J
with the direct coupling potentials
N
Z 1
Viir)=-29§.. d. b
50) == 8y 20 @ | g | 2)

and the exchange terms

1
’rk: — 1|

Wz‘jFE,j(T) = Z (D, |

k=1

[(A=1)9;Fg ;)

Close-couplingcanyield completedata sets,and the results are
internally consistent(unitary theory that conservegotal flux)!
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Total Cross Sections for Electron-Impact Excitation of Helium
K. Bartschat, J. Phys. B 31 (1998) L469
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Already in 1998, de Heer recommends 0.5 x (CCC+RMPS) for
uncertainty of 10% — independent of experiment!
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Cross Section (a(z))

Metastable Excitation Function in Kr
Experiment: Buckman et al (1983), multlplled by 0.67

Theories: 31-sta ‘ | ~ ' ‘
51-state Brelt Paull R matrix (Bartschat & Grum Grzhlmallo 2000)
06 : | y | ' | v | ' |
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We have a great program now :):):)
General B-Spline R-Matrix (Close-Coupling) Programs (D)BSR

e Key Ideas:
I ' I ' I ' I ' I ' I
e Use B-splines as universal 10 —
basis set to represent the i k=8, 8= 1, 4=03 .
. . 08 |- —
continuum orbitals perfect orthogonality due to compact interval

e Allow mnon-orthogonal or- o /
bital sets for bound and -

contimunm radial functions _ 04 - """"""’ -
not just the numerical basis! :z : 292929’929292 :

O. Zatsarinny, CPC 174 (2006) 273 I

e Consequences:
e Much improved target description possible with small CI expansions
e Consistent description of the NN-electron target and (IN+1)-electron collision

problems
e No “Buttle correction” since B-spline basis is effectively complete
e Complications: record: 400,000
e Setting up the Hamiltonian matrix can be very complicated and lengthj 10 do 50-100 times;

Generalized eigenvalue problem needs to be solved 0.5-1.0MSU
(1 MSU = $50,000

[ ]
e Matrix size typically 100.,000 or mor.e due to s.1ze of B-spline basis in NSF Accounting)
e Rescue: Excellent numerical properties of B-splines; use of (SCA)LAPATK et ar.

We also have to solve the problem outside the box for each energy (from 100's to 100,000's).
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List of early calculations with the BSR code (rapidly growing)

hv + Li
hv + He™
hv+ C”
hv + B~
hv+ O
hv + Ca™
e + He

et+C
e+ O

e + Ne

e+ Mg
e+ S

e+ Ar

e + K (inner-shell)
e+Zn

e+ Fe'

e+ Kr

e + Xe

Rydberg series in C
osc. strengths in Ar
osc. strengths in S
osc. strengths in Xe

Zatsarinny O and Froese Fischer C J. Phys. B 33 313 (2000)
Zatsarinny O, Gorczyca T W and Froese Fischer C J. Phys. B. 35 4161 (2002)

Gibson N D ef al. Phys. Rev. A 67, 030703 (2003)
Zatsarinny O and Gorczyca T W Abstracts of XXII ICPEAC (2003)

Zatsarinny O and Bartschat K Phys. Rev. A 73 022714 (2006) since 2013

at least 100 more

Zatsarinny O ef al. Phys. Rev. A 74 052708 (2006)
Stepanovic et al. J. Phys. B 39 1547 (2006)
Lange M et al. J. Phys. B 39 4179 (2006)
Zatsarinny O, Bartschat K, Bandurina L and Gedeon V' Phys. Rev. A 71 042702 (2005)
Zatsarinny O and Tayal S S J. Phys. B 34 1299 (2001)

Zatsarinny O and Tayal S S J. Phys. B 35 241 (2002)
Zatsarinny O and Tayal SS As. J. S. S. 148 575 (2003)
Zatsarinny O and Bartschat K J. Phys. B 37 2173 (2004) J. PhyS B 46
Bommels J ef al. Phys. Rev. A 71, 012704 (2005)

Topical Review:

(2013) 112001
Allan M et al. J. Phys. B 39 1.139 (2006)
Bartschat K, Zatsarinny O, Bray I, Fursa D V and Stelbovics A T J. Phys. B 37 2617 (2004)
Zatsarinny O and Tayal S S J. Phys. B 34 3383 (2001)
Zatsarinny O and Tayal S S J. Phys. B 35 2493 (2002)
Zatsarinny O and Bartschat K J. Phys. B 37 4693 (2004)
Borovik A A et al. Phys. Rev. 4, 73 062701 (2006)
Zatsarinny O and Bartschat K Phys. Rev. A 71 022716 (2005)
Zatsarinny O and Bartschat K Phys. Rev. A 72 020702(R) (2005)
Zatsarinny O and Bartschat K J. Phys. B 40 F43 (2007)
Allan M, Zatsarinny O and Bartschat K Phys. Rev. A 030701(R) (2006)
Zatsarinny O and Froese Fischer C J. Phys. B 35 4669 (2002)
Zatsarinny O and Bartschat K J. Phys. B: At. Mol. Opt. Phys. 39 2145 (2006)
Zatsarinny O and Bartschat K J. Phys. B: At. Mol. Opt. Phys. 39 2861 (2006)
Dasgupta A et al. Phys. Rev. A 74 012509 (2006)



klaus
Text Box
      

klaus
Text Box
List of early calculations with the BSR code (rapidly growing)

klaus
Text Box
at least 100 more
 since 2013

klaus
Text Box
Topical Review:
 J. Phys. B 46 (2013)  112001


Our Apparatus — Supercomputers

‘Kraken (NICS)
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Latest: Frontera
(the new NSF flagship
machine; #8 in the world)
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Stampede (TACC) Stampede-2)
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A few examplesof (mostly) BSR calculations...

Metastableyield in e-Necollisions

e Using our semi-relativistic B-spline R-matrix (BSR) method [Zatsarinny and
Bartschat, J. Phys. B 37, 2173 (2004)], we achieved unprecendented agreement
with experiment for angle-integrated cross sections in e—Ne collisions.

0.15

| | | | l || ] ] ] l | | | | | ] l ] ]
- e-Ne o Buckman eral. (1983)x0.78 | -
- 3s[3/2],+ 3s'[1/2], !‘t -
" 0.10 | _
(- = .
O
= i I
Q
2 i )
n i -
S
S 0.05 —
O-OO ;._....‘; 1 | 1 1 1 1 | 1 1 1 1 | 1 1

17 18 19
Electron Energy (eV)
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Resonances the excitation of the Ne (2p53p) states
Allan, Franz, Hotop, Zatsarinny, Bartschat (2009),J. Phys.B 42,044009

7\ L B S L S B B B B

Allis-Prize || expt. n 'Sy _
2020 | — 135°
I BSR31| /|, , e-15_
21— |
) 1= —= -
g it's looking
a B " s\
£ ,0 N | good:):))
% B 452 ﬁ) 180°
O B ny ny fi f _
10— I I —
oL _
R A N TR T T A T T N NN NN NN NN S S M M A B
18.5 19.0 19.5 20.0 20.5
Electron Energy (eV)

Expanded view of the resonant features in selected cross sections for the excitation
of the 3p states. Experiment is shown by the more ragged red line, theory by the
smooth blue line. The present experimental energies, labels (using the notation
of Buckman et al. (1983), and configurations of the resonances are given above the
spectra. Threshold energies are indicated below the lower spectrum.
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Cross Section (a(z))

Metastable Excitation Function in Kr

Experiment: Buckman et al (1983), multlplled by 0.67

Theories: 31-state Breit-Par matr n & tschat 1998)
Sl-state Brelt Pauh R-matrlx (Bartschat & Grum-Grzhlmallo 2000)

49-state Breit-Pauli B-spline R-matrix

0.6 . , ; — . — —JPB 43 (2010) 074031
- 5s[3/21, + 58172, || | _
0.5 F | B | _
| o
_ [I\ f \ |
0.4  1 ;
03 | | (it | A i
! lv” ? J ]
0.2 | \
0.1 | 4 -
X What a difference :):):) .
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PHYSICAL REVIEW A 86, 022717 (2012)

Electron-impact excitation of neon at intermediate energies
Oleg Zatsarinny and Klaus Bartschat

BIG SURPRISE (discovered through a GEC collaboration): k
This Is not what | learned In "Introduction to Atomic Collision Theory".

20

0
Electron Energy (eV)

100 200

20

0
Electron Energy (eV)

100

e I "'I"""'"I""""I'"-' IIlIlI'""""'I""""I"'J
= - 3d[1/2] - - 3d[3/2], |
S 3 ° 1 12} 2
= _____ T : ‘ very strong model
= 2 - = = BSR-46 8 - ' |dependence of the results
S —— BSR-457 : ~ _
& l * RMPS-235 | _ -
» 1 - 4 | . -
g : = ~ .o i ~— “". |
o | ol B :
40 60 80 100 20 40 60 80 100
5 30} Y 3d(1/2, { &f 3d[3/2], -
o | R optically allowed 2p —> 3d |.
~ 20} s~ | transition should be easy - _ _
o - FETL. o ;
o | e 40 |
B .t -
10|
» [ 20 L
o !
SHE
0 0

200

Collisions at "Intermediate energies":
Coupling to the continuum can be very, very important.
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PHYSICAL REVIEW A 86, 022717 (2012)
Electron-impact excitation of neon at intermediate energies
Oleg Zatsarinny and Klaus Bartschat
Department of Physics and Astronomy, Drake University, Des Moines, lowa 50311, USA
(Received 18 July 2012; published 30 August 2012)
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Since then, we have shown that thls IS a general
problem In electron collisions with outer p-shell
targets (e.q., C, N, F, CI, Ar).
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Convergence and sensitivity studies provide a systematic way to
assign some uncertainty to theoretical predictions,
which Is becoming an increasingly "hot" topic.
(PRA editorial 2011, IAEA/ITAMP workshop 2014, ...)
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targets (e.g., C, N, F, Cl, Ar). 



lonization In the Close-Coupling Formalism

e Recall: We are interested in the ionization process

eq(kgs o) + A(Lg, My So, Mg,) — €1 (K, py) + eq(ky, o) + AT(Ly, My; Sy, Mg )

¢ We need the ionization amplitude
f(Lg, My, Sgi kg — Lp, My, Spiky, k)

e We employ the B-spline R-matrix method of Zatsarinny (CPC 174 (2006) 273)
with a large number of pseudo-states:
e These pseudo-states simulate the effect of the continuum.

e The scattering amplitudes for excitation of these pseudo-states are used to
form the ionization amplitude: This direct projection is the essential
idea — we'll see if it works.

k. . :
f(LO7MO7 SO; kO — Lf7Mf7 Sf; kl? k2) — Z<\ij ‘®<Lp5p>> f(LO7 MO7 SO7 kO - Lp7 Mp7 Sp7 klp)'

p
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SomeChecks: lonization without Excitation (compareto CCC and TDCC)

Total and Single-Differential Cross Section

Total cross section =sum of I I I I I I I
excitation cross sections to ! e - He E=100 eV
positive-energy pseudo-states. 31 -

o
o

o
AN
T I T T T T
|

B Miiller-Fiedler ef al (1986)

® Montague et al. (1984)

o Rejoub et al. (2002)
Sorokin et al. (2004) |
—— BSR-525 <—|That's a lot of states!

——— BSR with 1s? correlation

I N BSR227 - interpolation
I Q@ I —— BSR227 - projection
i N
0.3 - . g 2L -
K SN i © B
X 69 ! - -
[ ee] 2 definitely looks o.k.
0.2 |- Y
- ®)
Qo
7))

1

lonization Cross Section (10'16 cm2)
©
|

& CCC with 1s? correlation 1
B [/] MEFEE B EE A S B RS A SR A B R
oot - — 0
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Electron Energy (eV) Secondary Energy (eV)

Including correlation in the ground state reduces the theoretical result.

Interpolation yields smoother result, but direct projection is acceptable.
e DIRECT PROJECTION is NECESSARY for MULTI-CHANNEL cases!

Sofar, sogood... Let's gofor more detail!
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TDCS (10'21 cm? eV'lsr'z)

Triple-Differential Cross Section for Direct Ionization
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experiment: Ren et al. (2011)
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A Benchmark Comparison:
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(e,2e)onAr isavery | ..o....n.......... g story. It includesthe discoveryof an
error in the processingof the raw experimental data, which wasfound by the
confidencegainedin BSR predictions ...

(e,2e) on Ar (3p°)
E,=66eV;E,=47eV;E,=3¢eV; 6, =15°

p X. Renet al. (Phys.Rev. A 93(2016)062704,
0

The agreementis not perfect, but no other theory
(that we know of) getsanywhere near experiment.
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About the project Where do the results go*

The Plasma Data Exchange Project is a community-based

Electronics Conference (GEC), a leading international meeting httpS / / fr . IXCat . n et/ h O m e/

One (of many) databases: LXCat

ST NAVIGATION

NEXT »

wsosens

part, the well-recognized needs for the community to organize the means of collecting, evaluating and sharing data both for modeling and for
interpretation of experiments.

open-acceswebsitefor collecting,displaying,anddownloadingelectronandion scattering
crosssectionsswarmparametergmobility, diffusioncoefficientsetc), reactionrates.energy
distributionfunctions,etc.andotherdatarequiredfor modelinglow temperaturglasmas.

This is a dynamic website, evolving as contributors add or upgrade data. Check back again frequently.

Supporting organizations

a0 curtin=s (o
«\’M f University of Technology

Laplace e

Wrae o . 1] TRRIITY ntemol <>

UNIVERSITY

A EDED
FRIPRp W TouLouse

nstitute of Space and R E :
M Astronautical Science I I A TU / e M STAE

Australia -
National IS -/ Plasma Matters.

zuTu-07-10 | New links to software

Links have been added to a multi-term Boltizmann
solver, and to three tools by Mikhail Benilov and co-
workers. Visit the recommended software page.

RECENT PUBLICATIONS

2019-03-05 | NEW UNPUBLISHED NOTES
Data needed for modeling low-temperature plasmas by
LC Pitchford ... read more »

PROJECT STATISTICS

Scattering cross sections: 24 databases | 94 x 415
species | 21.1k records | updated: 30 April 2018
Differential scattering cross sections: 4 databases |
29 species | 517 records | updated: 12 March 2019
Interaction potentials: 1 database | 78 x 8 species |
646 records | updated: 30 April 2019

Oscillator strengths: 1 database | 65 species | 150
records | updated: 25 November 2013

Swarm / transport data: 15 databases | 362 x 108
species | 169.4k records | updated: 30 April 2019
Publications, notes and reports: 5 databases | 30
records | updated: 5 March 2019

Copyright @ 2009-2019, the LXCat team. The use without proper referencing to databases and software used is prohibited. All Rights Reserved. You currently use FR | NL mirror site.


klaus
Text Box
Where do the results go?
One (of many) databases:  LXCat
https://fr.lxcat.net/home/

klaus
Text Box
open-access website for collecting, displaying, and downloading electron and ion scattering cross sections, swarm parameters (mobility, diffusion coefficients, etc.), reaction rates, energy distribution functions, etc. and other data required for modeling low temperature plasmas. 


BSR (Quantum-mechanical calculations by O. Zatsarinny and K. Bartschat) [

PERMLINK: www.Ixcat.net/BSR

DESCRIPTION: The results in this database are from a semirelativistic Breit-Pauli B-spline R-matrix (close coupling) treatment of e-Ar
collisions. An individually optimized, term-dependent set of non-orthogonal valence orbitals was used to account for the strong term
dependence in the one-electron orbitals. The predictions have been validated against a number of benchmark experimental data measured in
crossed-beam setups. Particularly good agreement was achieved in the near-threshold resonance regime, where the excitation process is
dominated by negative-ion resonances.

CONTACT: O. Zatsarinny and K. Bartschat

Drake University

Des Moines, lowa 50311, USA

e-mails: oleg_zoi@ @yahoo.com and klaus.bartschat@ @drake.edu

HOW TO REFERENCE: O. Zatsarinny and K. Bartschat 2004 J. Phys. B: At. Mol. Opt. Phys. 37 4693 and

M. Allan, O. Zatsarinny, and K. Bartschat 2006 Phys. Rev. A 74 030701 (R).

SCATTERING CROSS SECTIONS [/ grown to 9339 by Sept. 27, 2020

Species: e + Ar {30} , Be {19}, , F {8} , Kr [70], N {27} , Ne [34], Xe [76]

spoates: 201100 28/,-£01/09.00 Data collections by Phelps, Morgan, Hayashi, Biagi, ..., have

2 Bl T S R about 30,000 downloads each; BSR (for only a few atoms and
DIFFERENTIAL SCATTERING CROSS SECTIONS [~/ [ions) is fully ab initio based on quantum mechanics.

Species: e + Ar [62] grown to 1355 by Sept. 27, 2020

Updates: 2013-11-06_~2016-05-29

Downloads: 1219 times from 2013-11-07
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How goodare the data?
[This questionis not just for theory!]

Uncertainty estimates for theoretical atomic

and molecular data [Seealso:
The Editors 2011Phys.Rev. A 83 040001

Topical Review
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Abstract
Sources of uncertainty are reviewed for calculated atomic and molecular data that are
important for plasma modeling: atomic and molecular structures and cross sections for
electron-atom, electron-molecule, and heavy particle collisions. We concentrate on model
uncertainties due to approximations to the fundamental many-body quantum mechanical
equations and we aim to provide guidelines to estimate uncertainties as a routine part of
computations of data for structure and scattering.
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Do you know what your great collision codescattersfrom?

Structure Calculations with the BSR Code

IOP PUBLISHING PHYSICA SCRIPTA

Phys. Scr. T134 (2009) 014020 (9pp) doi:10.1088/0031-8949/2009/T134/014020

B-spline calculations of oscillator
strengths in noble gases

Oleg Zatsarinny and Klaus Bartschat

Department of Physics and Astronomy, Drake University, Des Moines, 1A 50311, USA

Abstract

B-spline box-based multi-channel calculations of transition probabilities in noble gases are
reported for energy levels up to » = 12. Energy levels and oscillator strengths for transitions
from the p® ground-state configuration, as well as for transitions between excited states, have
been computed in the Breit—Pauli approximation. Individually optimized, term-dependent sets
of non-orthogonal valence orbitals are used to account for the strong term dependence in the
one-electron orbitals. The agreement in the length and velocity gauges of the transition data
and the accuracy of the binding energies are used to estimate the accuracy of our results,
which are also compared with experimental and other theoretical data. It is shown that the
present method can be used for accurate calculations of oscillator strengths for states with
intermediate to high n-values, for which it is difficult to apply standard multi-configuration
Hartree—Fock (MCHF) methods. Recent developments based on the extension of our
computer codes from the semi-relativistic Breit—Pauli Hamiltonian to the full relativistic
Dirac—Breit Hamiltonian are also reported.
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Energy Levels in Heavy Noble Gases

Phys. Scr. T134 (2009) 014020

O Zatsarinny and K Bartschat

Table 1. Binding energies (NIST [1]) and energy differences (computed—observed) in eV for some low-lying levels in Ne, Ar, Kr and Xe.
The values in bold are average differences for the states in the respective configuration obtained when the core-valence correlation is

omitted.
Ne NIST Diff. Ar NIST Diff. Kr NIST Dift. Xe NIST Diff.
2p° 21.565 0.061 3p® 15.760 0.044 4p® 14.000 0.024 5p° 12.565 0.020
3s[3/2], 4.945 0.012  4s[3/2], 4211 0.102  5s[3/2]> 4.084 0.128  6s[3/2], 4.250 0.100
3s[3/2]; 4.894 0.015 4s[3/2], 4.136 0.100  5s[3/2], 3.967 0.115  6s[3/2], 4.129 0.094
0.200 0.310 0.350 0.300
3p[1/2] 3.183 0.007  4p[1/2] 2.853 0.033  5p[1/2], 2.696 0.033  6p[1/2] 2.985 0.071
3p[5/2]5 3.009 0.009  4p[5/2]s 2.684 0.024  5p[5/2]s 2.557 0.036  6p[5/2]> 2.880 0.068
3p[5/2], 2.989 0.007  4p[5/2], 2.665 0.028  5p[5/2], 2.555 0.046  6p[5/2]); 2.845 0.055
3p[3/2] 2.952 0.009  4p[3/2] 2.606 0.022  5p[3/2], 2.473 0.031  6p[3/2] 2.776 0.043
3p[3/2], 2.928 0.008  4p[3/2], 2.588 0.029  5p[3/2], 2.454 0.036  6p[3/2]; 2.744 0.057
3p[1/2]s 2.853 0.008  4p[1/2], 2.487 0.024  5p[1/2], 2.334 0.052  6p[1/2], 2.632 0.064
0.070 0.130 0.140 0.130
3d[1/2], 1.540 0.004  3d[1/2], 1.915 0.116  4d[1/2], 2.001 0.116  5d[1/2], 2.675 0.014
3d[1/2], 1.538 0.004 3d[1/2], 1.896 0.113  4d[1/2], 1.963 0.112  5d[1/2], 2.648 0.066
3d[7/2]a 1.530 0.001 3d[3/2]» 1.856 0.105 4d[3/2]» 1.888 0.101  5d[7/2]4 2.622 0.168
3d[7/2]5 1.530 0.006  3d[7/2]4 1.780 0.081 4d[7/2]4 1.874 0.094  5d[3/2]4 2.607 0.042
3d[3/2]> 1.528 0.005 3d[7/2]; 1.747 0.072  4d[7/2]; 1.821 0.083  5d[7/2]; 2.526 0.144
3d[3/2], 1.524 0.005  3d[5/2], 1.697 0.064 4d[5/2], 1.742 0.072  5d[5/2], 2.408 0.109
3d[5/2], 1.516 0.007  3d[5/2]s 1.661 0.048 4d[5/2]s 1.715 0.068 5d[5/2]s 2.345 0.122
3d[5/2]5 1.516 0.006  3d[3/2], 1.607 0.047  4d[3/2], 1.645 0.058  5d[3/2], 2.164 0.011
0.015 0.180 0.200

;0.250

effect of core-valence correlations
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Oscillator Strengths in Neon

Phys. Scr. T134 (2009) 014020 O Zatsarinny and K Bartschat

Table 2. Oscillator strengths for excitation from the ground state in Ne, as obtained in the length ( 1) and velocity ( fv) forms of the electric
dipole operator.

Upper level i fv Other theory Experiment
[10] [13] [29] [2] [28]

3s[3/2], 0.0118 0.0116 0.0109 0.0102 0.0126 0.0118(6) 0.0124(38)

0.0163* 0.0156*

0.0130°>  0.0135"
3s'[1/2]; 0.159 0.156 0.151 0.146 0.168 0.159(8) 0.0156(9)

0.161° 0.147*

0.144° 0.148"
4s[3/2], 0.0126 0.0129 0.0132 0.0131 0.0152 0.0129(6) 0.0126(6)
4s'[1/2], 0.0174 0.0179 0.0152 0.0181 0.0193 0.0165(8) 0.0167(7)
3d[1/2], 0.00479  0.00487  0.00396  0.0066 0.00558
3d[3/2], 0.0146 0.0149 0.0129 0.0130 0.0167
3d[1/2]; +3d[3/2]; 0.0194 0.0198 0.0169 0.0199 0.0223 0.0186(9) 0.0183(8)
3d'[3/2], 0.00718 0.00731 0.00631 0.0069 0.00859 0.00665(33) 0.00687(32)
5s[3/2], 0.00628  0.00640 0.0068 0.00727 0.00637(32) 0.00645(18)
58'[1/2], 0.00481  0.00490 0.0053  0.00502 0.00461(23)  0.00407(29)
4d[1/2], +4d[3/2]; 0.00906 0.00895 0.0101 0.00944(32) 0.00937(37)
4d'[3/2], 0.00432  0.00427 0.00481 0.00439(22) 0.00447(13)
6s[3/2] 0.00325 0.00331 0.00371 0.00330(30) 0.00324(19)
6s'[1/2], 0.00168 0.00172 0.00203 0.00156(16)  0.00220(45)
5d[1/2]; +5d[3/2];  0.00520 0.00510 0.00538 0.00543(54) 0.00449(52)
5d'[3/2], 0.00255  0.00249 0.00273 0.00229(23)

* Avgoustoglou and Beck [12]—relativistic MBPT.
® Dong et al [15]—MCDF calculations.



Oscillator Strengths in Xenon
Table S. Oscillator strengths for excitation from the ground state in Xe, as obtained in the
length ( /1) and velocity ( fy) forms of the electric dipole operator.

Upper level Breit-Pauli Dirac Experiment
i N L A [3]
6s[3/2], 0.278 0.224 0.260 0.258 0.273(14)
0.249%  0.256% 0.271°  0.263°
6s'[1/2], 0.186 0.157 0.188 0.189 0.186(9)
0.158°> 0.154°
5d[1/2], 0.0399  0.0345 0.0083  0.0071 0.0105(5)
5d[3/2]; 0.380 0.303 0.303 0.327 0.379(19)
7s[3 /2] 0.0785  0.0633 0.0791 0.0783 0.0859(43)
6d[1/2]; < 0.0001 0.0003 0.0005 < 0.001
6d[3/2]; 0.0939  0.0758 0.0987 0.0873 0.0835(84)
8s[3/2], 0.0262  0.0211 0.0201  0.0192 0.0222(22)
7d[1/2]; 0.0146  0.0105 0.0395 0.0441 0.0227(23)
7d[3/2]; 0.0001  0.0002 0.0064 0.0081 < 0.001
9s[3/2]; 0.0088  0.0072 0.0002 0.0003 < 0.001
5d'[3/2], 0.151 0.114 0.167 0.170 0.191(19)
8d[1/2]; 0.0123  0.0091 0.0068 0.0071 0.0088(9)
8d[3/2]; 0.119 0.091 0.0846  0.0835 0.0967(97)
10s[3/2]; 0.0139  0.0110 0.0139 0.0134 0.0288(29)




Summary of structure work

¢ The non-orthogonal orbital technique allows us account for term-dependence and
relaxation effects practically to full extent. At the same time, this reduce the size of
the configuration expansions, because we use specific non-orthogonal sets of
correlation orbitals for different kinds of correlation effects.

¢ B-spline multi-channel models allow us to treat entire Rydberg series and can be
used for accurate calculations of oscillator strengths for states with intermediate
and high n-values. For such states, it is difficult to apply standard CI or MCHF

methods.

e The accuracy obtained for the low-lying states is close to that reached in large-scale

MCHEF calculations.

¢ Good agreement with experiment was obtained for the transitions from the ground
states and also for transitions between excited states.

e (Calculations performed in this work: s-, p-, d-, and f-levels up to n = 12.

Ne
Ar
Kr
Xe

- 299
- 359
- 212
- 125

states
states
states
states

were recently published:

BSR: O. Zatsarinny, Comp. Phys. Commun. 174 (2006) 273
O. Zatsarinny and K. Bartschat, J. Phys. B 39 (2006) 2145

Ar:

11300 transitions
19000 transitions
6450 transitions
2550 transitions

All calculations are fully ab initio.

The computer code BSR used in the present calculations and the results for Ar
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A "simple"(?) collision problem. e-Be": coupling to continuum mostimportant for
1) optically forbidden transitions and/or ii) small crosssections
goodagreementbetweenCCC, RMPS, TDCC — no experiment!
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00 ' FIG. 5. Electron-impact excitation cross sections from the 2s

ground term of Be™ to the ns and nd excited terms. Dashed curves
are from the present 14-term R-matrix calculation; solid curves are
from the present 49-term RMPS calculation; solid squares are from
the present TDCC calculation; dot-dashed curves from the CCC
calculation by Bartschat and Bray [14].

Energy (eV)

FIG. 4. Electron-impact excitation cross sections from the 2s
ground term of Be™ to the np excited terms. Dashed curves are
from the present 14-term R-matrix calculation; solid curves are
from the present 49-term RMPS calculation; solid squares are from
the present TDCC calculation; dot-dashed curves from the CCC
calculation by Bartschat and Bray [14].

This is alight quasi-oneelectron system.Essentially solved15 yearsago.

Phys.Rev.A 68(2003)062705
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Another simpleone. e-Be: coupling to continuum mostimportant for
1) optically forbidden transitions and/or ii) small crosssections
goodagreementbetweenCCC RMPS TDCC —no experlmentI
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FIG. 2. Electron-impact excitation cross sections from the
252§ ground term of Be to the 2snp *P and 2snp 'P excited
terms for n=3 and 4. Dashed curves are from the present 29-term
R-matrix calculation; solid curves are from the present 280-term
RMPS calculation; solid circles are from CCC calculations as de-
scribed in Fursa and Bray [10] and provided at the CCC database
web site [11].
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FIG. 3. Electron-impact excitation cross sections from the
25*1S ground term of Be to the 2sns 'S and 2snd 'D excited
terms. Dashed curves are from the present 29-term R-matrix calcu-
lation; solid curves are from the present 280-term RMPS calcula-
tion; solid circles are from CCC calculations as described in Fursa
and Bray [10] and provided at the CCC database web site [11].

This is alight quasi-two electron system.Essentiallysolved15 yearsago.

Phys.Rev. A 68 (2003)032712
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Atomic Data and Nuclear Data Tables 127-128 (2019) 1-21

Contents lists available at ScienceDirect

Atomic Data and Nuclear Data Tables

journal homepage: www.elsevier.com/locate/adt

One can now safely recommend extensive datasets for this system.

Recommended electron-impact excitation and ionization cross N
sections for Be | et
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ARTICLE INFO ABSTRACT

Article history: Analytic fits to the recommended electron-impact excitation and ionization cross sections for Be I are
Received 17 August 2018 presented. The lowest 19 terms of configurations 2snl (n < 4) and 2p? terms below the first ionization limit
Received in revised form 1 November 2018 are considered. The fits are based on the accurate calculations with the convergent close coupling (CCC)

Accepted 1 November 2018

Available online 23 November 2018 method as well as the B-spline R-matrix (BSR) approach. The fitted cross sections provide rate coefficients

that are believed to approximate the original data within 10% with very few exceptions. The oscillator
strengths for the dipole-allowed transitions between all the considered states are calculated with the
relativistic multi-configuration Dirac-Hartree-Fock (MCDHF) approach and compared with the CCC and
BSR results. This comparison shows a very good agreement except for a handful of cases with likely strong
cancellations.

© 2018 Elsevier Inc. All rights reserved.
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TABLE II. Excitation energies (in eV) of the Fe 11 final target levels included in the present photoionization calculations.

Index Configuration Term  Present  NIST [17] Diff. Index Configuration  Term Present NIST [17] Diff.

1 3d°(’D)4s a®D  0.00000  0.00000 0.000 51 3d°CP)4p y4D°  7.68767  7.67642 0.012
2 3d’ a‘F 022873 023746  —0.008 52 3d°CH)4p 20 7.75384 7.68254 0.071
3 3d°(D)4s a*D 1.00085  0.98236 0.019 53 3d°CF)4p x*D°  7.79919 7.78729 0.012
4 3d7 a*P 161611 164122 —0.025 54 3d°CF)4p Z2F° 793216  7.92629 0.006
5 3d’ a’G 197335  1.93060 0.042 55 3d°CFYdp  y*G® 796447  7.87869 0.086
6 3d’ a’P 215249 225549  —0.102 56 3d°CCP)4p Z2P° 798689  7.98813  —0.001
7 3d’ a’H 245967 248451 —0.025 57 3d°CFydp  y2G°  8.02078  7.99718 0.024
8 3d7 a’D 252821  2.52757 0.000 58 3d°CH)dp  z?H°  8.05252 8.05993  —0.007
9 3d°CH )4s a*H 259340 2.60163  —0.009 59 3d°CGYp  x*G°  8.14564  8.09909 0.047
10 3d°(P)4s b*P 262235 261313 0.009 60 3d%4s? 27 8.16405
11 3d°(CF)4s b*F 278328 277477 0.008 61 3d°CGyp  x*F°  8.16627 8.16450 0.002
12 3d%4s? a®s 294341  2.84212 0.101 62 3d°CCP)4p z28°  8.18361 8.16489 0.019
13 3d°(CG)4s a*G  3.12934  3.13143  —0.002 63 3d°CG)4p y*He  8.19170 8.19302  —0.001
14 3d°(CP)4s b2P  3.13657 320920 —0.072 64 3d°CFYdp  y2?D° 827347 8.26940 0.005
15 3d°CH )4s b2H 3.16495 320032 —0.035 65 3d°CGYp  y*H°  8.35303 8.33407 0.019
16 3d°(F)4s a’F 333076  3.34805 —0.017 66 3d3(S)dsdp  x*P° 853341 8.53496  —0.001
17 3d°(CG)ds b*G 377259  3.72956 0.043 67 3d°CGyp  y?F°  8.58723 8.58270 0.004
18 3d°(CD)4s b*D 3.84077  3.84398  —0.003 68 3d°CGap x2G°  8.70428 8.67498 0.029
19 3d’ b2F 3.88267 3.90300 —0.020 69 3d°(*ap z2K°  8.76101 8.76208  —0.001
20 3d°('T4s a’l 397082  4.02791 —0.057 70 3d°CDYdp  wiP°  8.84826 8.88371  —0.036
21 3d°('G)4s c2G  4.08447 410141  —0.016 71 3d°('Gydp  x?H°  8.85140 889788  —0.047
22 3d°(CD)4s b’D 443813  4.43693 0.001 72 3d°CDYdp  w*F°  8.90035 891993  —0.020
23 3d°('S)4s a’S 458154  4.56669 0.015 73 3d34s? ’D 8.92103
24 3d°('D)4s 2D 4.69523  4.68494 0010 74 3d°CCD)4p y2P° 897058  9.02530  —0.054
25 3d°CD)dp  z°D° 475973  4.74993 0.010 75 3d°CD)dp  wiD° 899030  8.94838 0.042

26 3d°(CDY4p z®F° 5.16594  5.17773 —0.012 76 3d°(LGYdp x2F°  9.01599 9.00526 0.011
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We need the structure of Fe Il (collision) and Fe I (initial bound states)

TABLE I. Excitation energies (in eV) of the Fe I target levels included in the present photoionization calculations.

PHYSICAL REVIEW A 99. 023430 (2019)

Index  Configuration Term Present  NIST [17] Diff. Index  Configuration Term Present ~ NIST [17] Diff.
1 3d%4s? a’D  0.00000  0.00000 0.000 23 3d" (PH )4s a'H 3.52020  3.52326  —0.003
2 3d7 (*F 4s a’F 0.86082  0.87493  —0.014 24 3d%4s? a'l 3.48480  3.58439  —0.003
3 3d7(*F ds a’F 148145 148836  —0.007 25 3d°(CDY4sdp 7z P°  3.54575  3.58639 0.005
4 3d7(“P)4s a’P  2.16087  2.14265 0.018 26 3d%4s? b3D 356252  3.58977  —0.003
5 3d%4s? a’P 228122 230004 —0.019 27 3d%4s? b'G  3.60328  3.64464  —0.004
6 3d%4s? a’H 236601 237711 —0.011 28 3d°CD)4s4p  z3D° 377607  3.86382  —0.003
7 3d°(CD)4sdp z'D° 240412  2.38311 0.021 29 3d°CD)4sdp  z3F° 3.82394  3.87662 0.030
8 3d%4s? b3F 254367  2.53060 0.013 30 348 c3F  4.05592  4.07445 0.015
9 3d%4s? a’G 267804  2.67132 0.007 31 3d7(*Fydp  y>D° 4.13847  4.10398  —0.006
10 3d7(*P)4s b3P 277262 2778906  —0.016 32 3d7(*Fydp  y3F° 4.16598  4.18009  —0.018
11 3d°CD)asdp  z'F° 277755 2719275  —0.015 33 3d°CD)4s4p  z3P° 416824  4.18450  —0.064
12 3d%4s? a'S  2.80530 34 3d7 (*D)4s b'D 423998  4.24445 0.005
13 3d7(*G)4s b3G 293034 293053 —0.000 35 3d7(CFydp  z°G° 432527 430728  —0.017
14 3d°CD)4sdp 7P’ 293705  2.93277 0.004 36 3d7(*Fydp  z3G° 437188  4.37506  —0.019
15 3d7(3P)4s c3P 298683 299573  —0.009 37 3d7 (*F )4s d3F 451238 453713 —0.000
16 3d’(CG)4s a'G  3.00166  2.99691 0.005 38 3d°CDYdsdp  y’P° 457776 4.54064  —0.014
17 3d°CD)sdp  z°D° 317777  3.19232  —0.015 39 3d7¢*F)dp  y3F° 449736  4.54289  —0.062
18 3d(*H4s b*H 320414 321453  —0.010 40 3d7 (*F )4s 'F 453208

19 3d7 (*D)4s a’*D 321687 322250 —0.006 41 3d7(*F)dp  y3D° 4776043 472430 0.024
20 3d°CDYasdp  z°F° 330659 332482  —0.018 42 3d8 D 473248

21 3d’(*P)4s a'P 335960  3.36494  —0.005 43 3d°(CD)dsdp  x°D°  4.86200  4.90585  —0.006
22 3d®4s? a'D  3.49993  3.49656 0.003 44 3d°CDYAsdp  x°F° 497766  4.98932  —0.012
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FIG. 1. Photoionization cross sections as a function of photon energy for a sample of low-lying even-parity states of Fe 1. The present

BSR-261 (BSR in the legend, first and third row) predictions are compared with the RM-134 (RM in the legend, second and fourth row) results
of Bautista et al. [3].
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FIG. 4. Photoionization cross section for transitions from the first few odd-parity excited terms of Fe 1. The present BSR-261 (BSR in the
legend, first and third row) predictions are compared with the RM-134 (RM in the legend, second and fourth row) results of Bautista et al. [3].
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FIG. 2. Photoionization cross section of the 3d®4s? 3D ground state of Fe I (a), along with the contributions from different subsets (b)—(f)
of final ionic configurations indicated in the legend.
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FIG. 2. Photoionization cross section of the 3d°4s* D ground state of Fe 1 (a), along with the contributions from different subsets (b)—(f)
of final ionic configurations indicated in the legend.
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Table 1. Comparison of selected oscillator strengths for excitation of Xe* from 5p*6s to 5p*6p in the velocity (V) and

length (L) forms. 1 denotes the wavelength of the optical transition.

Lower level Upper level A(nm) | PAD?[17] HCL"[18] NIST [20] ;his Worllj
5p‘(*P)6s [2]lae  5p‘CPBP ALl | 4603  0.239 - 026 0238 0323
5p*(°Po)Bs [2]se  5p*(P2)6p[3]°ne | 4844 0.408 0.540 052 0517 0586
5p*(Po)6s 2[0]vz  5p*(Po)6p 1]°2 | 488.4 |  0.480 _ _ 0569 0641
5p‘(°P2)6s 2[2]sz  5p*(P2)6p [2]°s. | 529.2 | 0.380 0.403 037 0404 0462
5p*(%P2)6s A[2ls.  5p*(P2)6p [2]°w. | 533.9 | 0.191 0.187 . 0193 0216
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Figure 2. Electron-impact excitation cross sections for transitions from 5p® 2Py, to selected 5p*6s (a) and 5p*5d (b)
states. For brevity the notation has been shortened in the legend, e.g., from 5p*(®P2)6s [2]s2 to (°P2)6s [2]sx, etc.

Panels (c) and (d) show the near-threshold results on a linear scale.
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What about really complex, heavy systems?

At a recent IAEA meeting, a scientist from the ITER project stated:
The three most important elements for us are ...

+ ..
Here are our best results for e-W"™ collisions:

A lot of work is still required before a reliable calculation can be carried out.
It seems advisable for people collaborate in code development and maintenance.
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Two-Photon Double Ionization of H, (a) . p,,z‘ Expt.

X. Guan and K. Bartschat (Drake U.), L. Koesterke (TACC), B.1. Schneider (NSF)

Goal: Resolve large discrepancies in previous calculations of this fundamental process.
Steps taken: 1) Optimized existing FEDVR code for Stampede
2) Sampled parameter space (photon energy, pulse duration) with about
100 runs (3000 cores and 10-20 hours of wallclock time each)
Findings: Discrepancies are due to surprisingly strong dependence of theoretical predictions
on laser parameters and (previously unresolved) effect of autoionizing states.
Broad Impact: These calculations support/explain very expensive FEL experiments.
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NSF CSSI Pl Meeting, Seattle, WA, Feb. 13-14, 2020

CSSI Element: A General and Effective B-Spline R-Matrix Package for
[ Charged-Particle and Photon Collisions with Atoms, Ions, and Molecules

; a PI: Oleg Zatsarinny; Co-PI: Klaus Bartschat; Post-Doc: Kathryn Hamilton
Dept. of Physics & Astronomy, Drake Univ., Des Moines, IA 50311, USA

Award: OAC-1834740

Introduction Goals
* BSR 1s a general program package to calculate high-quality atomic e Further development of the code (efficiency; parallelization;
data for: more physics: molecules and short-pulse, intense laser-atom
* structure (energy levels, oscillator strengths) interactions)
* photoionization (bound —> free transitions) e Simplification of input and output to facilitate use by non-
* electron scattering from atoms and ions experts
* BSR can be run in non-relativistic (LS), semi-relativistic (Breit- » Creation of many sample inputs, run scripts, and extensive
Pauli), and full-relativistic (Dirac-Coulomb) mode. documentation
* Data from BSR are used m: * Creation of a website with possibility for questions and
* fundamental research to support many experiments feedback
* data-intensive modelling applications, especially in plasma and * Wide and free distribution via CPC, github, AMP Gateway, etc.
astrophysics
B-spline atomic R-Matrix code (BSR)
o+ Cos Description of target states
ﬁ:upling = ;2 : ﬁzggizggcﬁgfgrge & 235\/ (HF, MCHF, BSR_CI, BSR_HF, BSR_MCHF)
N i o c adc argel o, targe oo
4s targ_o001 (%] 2 1 -676.59058592 10 9 4dw arge .C, arge DSW
: T O i S0 TN Socdee | e R
. s @ 11 oesmare G 2 o » D dow '
5p targ:%é 1 2 -1 ~676.31379441 15 @ V‘ C:phot > C 4s.c bSl‘_pal‘ target knot.dat
= I ; ; . 4s.w 1
etz g2 eralnumber of tarer contiguration: 4 Ca_bound : |
?fsvfjb - ]2.2 | number of substitutgon orbitals || Ca:sct B ¢ 5p.c b BSR I]?REP
nlsp = 14 ! number of partial waves ] Fe_photoionization B gpw target. SW +— — Cfg.OOI
C S.C ]
==> order of splines s I f °002
142 ==> nurc;ber 011: Sziines Er‘:s; iS.W BSR_CONF — ‘ g
20.00000 ==> nuclear charge (z) Sr_par e I
0.25000 ii> step size from @ to 1 (h for z¥r, = (1/2)"n) knot.dat : cfg.nnn
0-600000 e maximum 'z Gmme target MPI1
Preview of BSR test suite including sample target and knot.dat files. ~. | BSR ]ISREIT . int bnk.nnn
* 30,000-50,000 lines of FORTRAN 95 code organized in 10 |
BSR_MULT -
modules — BSR MAT | — bsr _mat.nnn
* Choice between serial and MPI parallelized versions of modules l
* (SCA)LAPACK for diagonalization of large matrices mult_bnk.nnn |
* Human-readable, descriptive BSR input files rsol.nnn — - h.nnn,  bound.nnn
* Target-state descriptions can be generated by widely-available non- 1 ooR :POL 1 l
BSR codes (HF, MCHEF, DARC) with plans to include other TR TONLATT = H.DAT | Energies
packages (CIV3, FAC) = l
* Suite of utilities for processing BSR outputs / \ BSR ION | «— [ PFARM, PSTGF
* Test suite with sample 1inputs, outputs, and run scripts for 7 zf_res  d.nnn i ~_
different problems (more to come) l BSR_PHOT | l
 Fully relativistic (Dirac-Coulomb) DBSR ith simi s ot e
ully re a.t vistic ( Irac Coulomb) DBSR code with similar Excitation, Ionization and
anatomy 1s undergoing development Oscillator Strengths Photoionization Cross Sections
Scientific Impact Community Interaction

(b) BSR * First release of BSR downloadable from Computer
Physics Communications
* BSR 3.0 available on the AMP Gateway:
* Gateway 1s based on Apache Airavata
* Institutional and individual (sign-up) logins allow
access to BSR for researchers and students.
* Access to XSEDE resources
* Code documentation hosted on gateway
* Integration with existing open-source time-dependent

Fully-differential cross section for (e,2e) on Ar(3p); Ren et al., R-matrix code 1s currently under development. AMP
Phys. Rev. A 93 (2016) 062704; no other theory comes even close to the data. Gateway

L. Atomic and Molecular Physics and Optics Gateway

= % =S 102} : BSR_breit BSR_conf BSR_dmat
= c | | ] 30/ 30/ 30/
.g 1 01 . g Preforms angular integrations to express Generates the close-coupling expansions Prepares the dipole matrix d.nnn or
O - @) the matrix elements of the Breit-Pauli based on the information given in the target calculates oscillator strengths between B-
(¢)) (D) 1 01 - Hamiltonian as a linear combination of file. spline bound-state solutions.
()] - (0)) radial integrals.
- w :
7 100t 4 @ Z x
o i 642 50 1 Tae A5F 1
= [ BSR, 3d®4s“ a°D | (O BSR, 3d’4s a°F
O 1 0
. . 10% £ E
1 0-1 ................. AP T U R RPN U RS S S ] BSR_hd BSR_mat BSR_prep
8 10 12 14 16 18 20 22 24 26 6 8 10 12 14 16 18 20 22 24 o @ o
P h Oton E n e rgy (eV) P hOtO n E n e rgy (eV) Preforms the final diagonalization of the Generates the interaction matrices in the B- Provides initial preparations for BSR
Hamiltonian matrix. spline representation. calculations, including numbering orbitals.
Photoionization of iron from ground and excited states; Zatsarinny et al., " #

Phys. Rev. A 99 (2019) 023430; very complex resonance structure.
Dashboard of the AMP Gateway.



Dashboard

BSR: B-spline atomic R-matrix codes

A general program to calculate continuum processes
using the B-spline R-matrix method.

ePolyScat

E3 version
ePolyScat is a suite of FORTRAN 90 programs and

libraries that can be used to study electron-molecule
scattering processes.

OpenMolcas

OpenMolcas mod xchem-2019-12

OpenMolcas with XCHEM modifications

CCC

Convergent Close Coupling Code

CCC_GPU
(1.0

GPU Version of Convergent Close-Coupling code

fds

6.7.4

Fire Dynamics Simulator (FDS) is a large-eddy
simulation (LES) code for low-speed flows, with an
emphasis on smoke and heat transport from fires.

RMT: R-Matrix with Time- dependence
(1.0

RMT is a program which solves the time-dependent
Schrodinger equation for general, multielectron atoms,
ions and molecules interacting with laser light.

tRecX
(1.0

tRecX-again for parallel execution on SKX nodes

tRecX-0.1
0.1)

Time dependent recursive indexing Software
https://trecx.physik.Imu.de/home.html older version

xchem

2019.12-dev

XCHEM - The *ab initio* Solution for Multichannel
Scattering Problems

UKRMol+

R matrix electron and positron scattering for molecules
and photoionization.
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Applications of artificial neural networks to proton-impact
ionization double differential cross sections
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Abstract. We use artificial neural networks (ANNs) to study proton impact single ionization double dif-
ferential cross sections of atoms and molecules. While widely used in other fields, to our knowledge, this is
the first time that an ANN has been used to study differential cross sections for atomic collisions. ANNs
are trained to learn patterns in data and make predictions for cases where no data exists. We test the
validity of the ANN’s predictions by comparing them to known measurements and find that the ANN does
an excellent job of predicting the known data. We then use the ANN to make predictions of cross sections

where no data currently exists.


http://www.epj.org
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6 Conclusions

We have used an Artificial Neural Network to predict pro-
ton impact double differential cross sections for single ion-
ization of atoms and molecules, and have tested the ac-
curacy of the ANN's predJctlons by comparing them to

Overall, the results show that the ANN is able to give
reasonable predictions for the shape and magnitude of
DDCS for single ionization of atoms and molecules. We are
currently exploring the application of ANNs to fully differ-
ential cross sections for both proton and electron impact
ionization processes, and plan to use traditional theoret-
ical models to test our predictions. Overall, we consider
the use of ANNs to predict atomic collision data to be
successful, and anticipate that they may be a useful tool
to provide additional approximate data that can be used
for modeling in other applications.
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Bayesian machine learning for quantum molecular dynamics . . .

® Gaustan procoms predetion
This article discusses applications of Bayesian machine learning for quantum molecular dynamics. One particular .

formulation of quantum dynamics advocated here is in the form of a machine learning simulator of the Schrédinger a
6 1
equation. If combined with the Bayesian statistics, such a simulator allows one to obtain not only the quantum

predictions but also the error bars of the dynamical results associated with uncertainties of inputs (such as the

potential energy surface or non-adiabatic couplings) into the nuclear Schrodinger equation. Instead of viewing atoms

=== Mean field resuls
as undergoing dynamics on a given potential energy surface, Bayesian machine learning allows one to formulate the

Training region

problem as the Schrédinger equation with a non-parametric distribution of potential energy surfaces that becomes

Order parameter

conditioned by the desired dynamical properties (such as the experimental measurements). Machine learning models
of the Schrodinger equation solutions can identify the sensitivity of the dynamical properties to different parts of the
potential surface, the collision energy, angular momentum, external field parameters and basis sets used for the
calculations. This can be used to inform the design of efficient quantum dynamics calculations. Machine learning

models can also be used to correlate rigorous results with approximate calculations, providing accurate interpolation

of exact results. Finally, there is evidence that it is possible to build Bayesian machine learning models capable of 004

physically extrapolating the solutions of the Schrodinger equation. This is particularly valuable as such models could 200 135 0.8%
complement common discovery tools to explore physical properties at Hamiltonian parameters not accessible by
rigorous quantum calculations or experiments, and potentially be used to accelerate the numerical integration of the

nuclear Schrédinger equation.
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for interpretation of the physics. [No time to discuss this here.]
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e The cross sections need to be combined with reliable plasma models. Maybe
machine optimization can replace or even improve upon the work done by
individuals whose datasets are available, for example, on LXCat.

e To make serious progress, there needs to be interest from somebody (e.g.,
NSF, DoE, DoD, Air Force, NASA, NIST, ..., industry) to fund these efforts.
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